Questions

- I know the reasons why everything is moving towards digital systems, but based on image quality alone, which is better for these systems, film or digital?
- Not sure how to interpret the left illustration on slide 25. Can you explain?
- Regarding to Voltage determining the X-ray energy Kvp, what is the unit Kvp is equivalent to typical voltage unit?

Email questions to <u>jackie24@uw.edu</u> by Friday April 26 The subject line should be "Phys 428 Lecture 4 Question"

Class Project

- Pick:
 - An imaging modality covered in class
 - A disease or disease and treatment
- Review:
 - what is the biology of the imaging
 - what is the physics of the imaging
 - what are the competing imaging (and non-imaging) methods
 - what is the relative cost effectiveness of your imaging modality for this disease?
- Form groups (or let me know) by Friday April 26
- 1 page outline Friday May 3 (20%)
- Background summary Friday May 10 (15%)

(what background material you will use & capsule summaries)

 Rough draft 	Friday May 17	(15%)
---------------------------------	---------------	-------

- Final version Friday May 31 (30%)
- Presentation / slides Friday June 7 (10%)
- Presentation Tuesday June 11 (10%)

X-ray Computed Tomography

Types of Images: Projection Imaging

Types of Images: Tomography Imaging

reconstruction of multiple images

form image volume

transaxial or axial view

coronal view

sagittal view

Comparing Projection and Tomographic Images

- Hounsfield's insight was that by imaging all the way around a patient we should have enough information to form a crosssectional image
- Sir Godfrey Hounsfield shared the 1979 Nobel Prize with Allan Cormack (of FBP fame), funded by the EMI and the Beatles
- Radiographs typically have higher resolution but much lower contrast and no depth information (i.e. in CT section below we can see lung structure)

Chest radiograph

Coronal *section* of a 3D CT image volume

CT Scanner Geometry

CT Scanner Geometry

CT Scanner Components

- Data acquisition in CT involves making transmission measurements through the object at angles around the object.
- A typical scanner acquires 1,000 projections with a fan-beam angle of 30 to 60 degrees incident upon 500 to 1000 detectors and does this in <1 second.

CT X-ray Tube

- In a vacuum assembly
- A resistive filament is used to 'boil off' electrons in the cathode with a carefully controlled current (10 to 500 mA)
- Free electrons are accelerated by the high voltage towards the anode

X-ray tubes

- Voltage determines maximum and x-ray energy, so is called the kVp (i.e. kilo-voltage potential), typically 90 kVp to 140 kVp for CT
- High-energy electrons smash into the anode
 - More than 99% energy goes into heat, so anode is rotated for cooling (3000+ RPM)
 - Bremmstrahlung then produces polyenergetic x-ray spectrum

Typical X-ray spectra in CT

scaled to peak fluence

Mass attenuation coefficient versus energy

Pre-Patient Collimation

Controls patient radiation exposure

Need for x-ray beam shaping

Addition of 'bow-tie' filters for beam shaping

Use of 'Bow-tie' beam shaping

Radiation dose considerations

Pre-Patient Collimation

Controls patient radiation exposure

X-ray Detector Assembly

X-ray CT Detectors

- The detectors are similar to those used in digital flat-panel imaging systems: scintillation followed by light collection
- The scintillator converts the high-energy photon to a light pulse, which is detected by photo diodes

X-ray CT Detectors

Typically composed of rareearth crystals (e.g. Gd_2O_2S)

Sintered to increase density

perspective view

X-ray CT Detectors

Detector module sits on a stack of electronic modules

- pre-amp
- ADC
- voltage supply

Gantry Slip Rings

Allows for continuous rotation

CT Scanner in Operation

• 64-slice CT, weight ~ 1 ton, speed 0.33 sec (180 rpm)

Narrow-beam Polyenergetic Attenuation

- The attenuation depends on material (thus position of material) and energy
- With bremsstrahlung radiation, there is a weighted distribution of energies
- We combine previous results to get the imaging equation

$$I(x) = \int_{E=0}^{E_{\text{max}}} E' S_0(E') e^{-\int_{0}^{x} \mu(x', E') dx'} dE'$$

Imaging Equation

 Similar to x-ray projection systems (ignoring geometric effects etc.) for intensity at a detector location d

$$I_{d} = \int_{0}^{E_{\text{max}}} S_{0}(E) E e^{-\int_{0}^{d} \mu(s, E) ds} dE$$

- In this case I_d is our measured data, and we want to recover an image of $\mu(x,y)$
- Unfortunately, the integration over energy presents a mathematically intractable inverse problem
- We work around this approximately by assuming an *effective* energy $\epsilon^{E_{\max}}$

$$\overline{E} = \frac{\int_0^{E_{\text{max}}} ES(E) dE}{\int_0^{E_{\text{max}}} S(E) dE}$$

Approximate Imaging Equation

Using an effective energy, we can write the imaging equation as

$$I_d = I_0 e^{-\int_0^d \mu(s, \overline{E}) ds}$$

- A further simplification comes from defining $g_d \triangleq -\ln\left(\frac{I_d}{I_0}\right)$
- Giving an x-ray transform $g_d = -\int_0^d \mu(s, \overline{E}) ds$

(we can solve this imaging equation)

- We need to measure the reference intensity I_0 , typically done with a detector at the edge of the fan
- Although we can use FBP, the effective energy will be object dependent, so the reconstructed $\mu(x,y)$ will only be approximate

X-ray CT Image Values

 With CT attempt to determine μ(x,y), but due to the bremsstrahlung spectrum we have a complicated weighting of μ (x,y) at different energies, which will change with scanner and patient thickness due to differential absorption.

Input x-ray bremsstrahlung spectrum (intensity vs. photon energy) for a commercial x-ray CT tube set to 120 kVp

Energy dependent linear attenuation coefficients $(\mu(x,y))$ for bone and muscle

CT Numbers or Hounsfield Units

- We can't solve the real inverse problem since we have a mix of densities of materials, each with different Compton and photoelectric attenuation factors at different energies, and a weighted energy spectrum
- The best we can do is to use an ad hoc image scaling
- The <u>CT number</u> for each pixel, (x,y) of the image is scaled to give us a fixed value for water (0) and air (-1000) according to:

$$CT(x,y) = 1000 \left[\frac{\mu(x,y) - \mu_{water}}{\mu_{water}} \right]$$

• $\mu(x, y)$ is the reconstructed attenuation coefficient for the voxel, μ_{water} is the attenuation coefficient of water and CT(x,y) is the CT number (using *Hounsfield units*) of the voxel values in the CT image

CT Numbers

Typical values in Hounsfield Units

CT scan showing 'apparent' density

Helical CT Scanning

- The patient is transported continuously through gantry while data are acquired continuously during several 360-deg rotations
- The ability to rapidly cover a large volume in a singlebreath hold eliminates respiratory misregistration and reduces the volume of intravenous contrast required

Pitch

$$pitch = \frac{table travel per rotation}{(number detectors) x (detector width)} = \frac{table travel per rotation}{acquisition beam width}$$

slingle slice example

- A pitch of 1.0 is roughly equivalent to axial (i.e. one slice at a time) scanning
 - best image quality in helical CT scanning
- A pitch of less than 1.0 involves overscanning
 - some slight improvement in image quality, but higher radiation dose to the patient
- A pitch greater than 1.0 is not sampling enough, relative to detector axial extent, to avoid artifacts
 - Faster scan time, however, often more than compensates for undersampling artifacts (i.e. patient can hold breath so no breathing artifacts).

Image Reconstruction from Helical data

• Samples for the plane-of-reconstruction are estimated using two projections that are 2π apart

$$p'(\gamma,\beta) = wp(\gamma,\beta) + (1-w)p(\gamma,\beta + 2\pi)$$
where $w = (q-x)/q$

Single versus Multi-row Detectors

Can image multiple planes at once

1 detector row

4 detector rows

Single versus Multi-row Detectors

Can image multiple planes at once

Multi-row Detectors

Helical Multi-Detector CT (MDCT)

- Fastest possible acquisition mode -- same region of body scanned in fewer rotations, even less motion effects
- Single row scanners have to either scan longer, or have bigger gaps in coverage, or accept less patient coverage
- The real advantage is reduction in scan time

1 detector row: pitch 1 and 2

4 detector rows: pitch 1

Contrast Agents

- Iodine- and barium-based contrast agents (very high Z) can be used to enhance small blood vessels and to show breakdowns in the vasculature
- Enhances contrast mechanisms in CT
- Typically iodine is injected for blood flow and barium swallowed for GI, air is now used in lower colon

CT scan without contrast showing 'apparent' density

CT scan with iodine-based contrast enhancement

Technique

- Technique refers to the factors that control image quality and patient radiation dose
- kVp (kV potential) energy distribution of X-ray photons (recall lower energy photons are absorbed more readily
- mA number of X-ray photons per second (controlled with tube current)
- s gantry rotation time in seconds
- mAs total number of photons (photons per second X seconds)
- pitch
- slice collimation
- filtration filters placed between tube and patient to adjust energy and/or attenuation (not discussed here)

Radiation dose versus kVp

 kVp not only controls the dose but also controls other factors such as image contrast, noise and x-ray beam penetration through patient

Parameter	80 kVp	120 kVp	140 kVp
Image Contrast	<u>Best</u>	Intermediate	Poor
Noise	Most	Average	<u>Least</u>
Penetration	Least	Average	<u>Most</u>

Effective Dose Comparison with Chest PA Exam

Procedures	Eff. Dose [mSv]	Equivalent no. of chest x-rays	Approx. period of background radiation
Chest PA	0.02	1	3 days
Pelvis	0.7	35	4 months
Abdomen	1	50	6 months
CT Chest	8	400	3.6 years
CT Abdomen or Pelvis	10-20	500	4.5 years

Typical Background Radiation - 3 mSv per year

Types of CT Artifacts

- Physics based
 - beam-hardening
 - partial volume effects
 - photon starvation
 - scatter
 - undersampling
- Scanner based
 - center-of-rotation
 - tube spitting
 - helical interpolation
 - cone-beam reconstruction
- Patient based
 - metallic or dense implants
 - motion
 - truncation

Beam Hardening

- Energy spectrum of an x-ray beam as it passes through water (rescaled)
- Mean energy increases with depth
- More photons get through, so measured attenuation is less than we would expect

CT image profiles across the centre of a uniform water phantom without beam hardening correction

Beam Hardening

 If there are significant contrast changes, beam-hardening can be difficult to correct

Metallic Objects

- Occur because the density of the metal is beyond the normal range that can be handled
- Additional artifacts from beam hardening, partial volume, and aliasing are likely to compound the problem

Patient Motion

 Respiratory motion effects during helical CT scans lead to well known artifacts at the dome of the

diaphragm

Truncation

- Standard CT field of view is 50 cm, but many patients exceed this
- Not often a problem for CT, but can be a problem when a truncated CT is used for PET attenuation correction

